In [1]:
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
In [2]:
data = pd.read_csv('DATA/cancer_classification.csv')
In [3]:
data.isnull().sum()
Out[3]:
mean radius                0
mean texture               0
mean perimeter             0
mean area                  0
mean smoothness            0
mean compactness           0
mean concavity             0
mean concave points        0
mean symmetry              0
mean fractal dimension     0
radius error               0
texture error              0
perimeter error            0
area error                 0
smoothness error           0
compactness error          0
concavity error            0
concave points error       0
symmetry error             0
fractal dimension error    0
worst radius               0
worst texture              0
worst perimeter            0
worst area                 0
worst smoothness           0
worst compactness          0
worst concavity            0
worst concave points       0
worst symmetry             0
worst fractal dimension    0
benign_0__mal_1            0
dtype: int64
In [4]:
data.describe().transpose()
Out[4]:
count mean std min 25% 50% 75% max
mean radius 569.0 14.127292 3.524049 6.981000 11.700000 13.370000 15.780000 28.11000
mean texture 569.0 19.289649 4.301036 9.710000 16.170000 18.840000 21.800000 39.28000
mean perimeter 569.0 91.969033 24.298981 43.790000 75.170000 86.240000 104.100000 188.50000
mean area 569.0 654.889104 351.914129 143.500000 420.300000 551.100000 782.700000 2501.00000
mean smoothness 569.0 0.096360 0.014064 0.052630 0.086370 0.095870 0.105300 0.16340
mean compactness 569.0 0.104341 0.052813 0.019380 0.064920 0.092630 0.130400 0.34540
mean concavity 569.0 0.088799 0.079720 0.000000 0.029560 0.061540 0.130700 0.42680
mean concave points 569.0 0.048919 0.038803 0.000000 0.020310 0.033500 0.074000 0.20120
mean symmetry 569.0 0.181162 0.027414 0.106000 0.161900 0.179200 0.195700 0.30400
mean fractal dimension 569.0 0.062798 0.007060 0.049960 0.057700 0.061540 0.066120 0.09744
radius error 569.0 0.405172 0.277313 0.111500 0.232400 0.324200 0.478900 2.87300
texture error 569.0 1.216853 0.551648 0.360200 0.833900 1.108000 1.474000 4.88500
perimeter error 569.0 2.866059 2.021855 0.757000 1.606000 2.287000 3.357000 21.98000
area error 569.0 40.337079 45.491006 6.802000 17.850000 24.530000 45.190000 542.20000
smoothness error 569.0 0.007041 0.003003 0.001713 0.005169 0.006380 0.008146 0.03113
compactness error 569.0 0.025478 0.017908 0.002252 0.013080 0.020450 0.032450 0.13540
concavity error 569.0 0.031894 0.030186 0.000000 0.015090 0.025890 0.042050 0.39600
concave points error 569.0 0.011796 0.006170 0.000000 0.007638 0.010930 0.014710 0.05279
symmetry error 569.0 0.020542 0.008266 0.007882 0.015160 0.018730 0.023480 0.07895
fractal dimension error 569.0 0.003795 0.002646 0.000895 0.002248 0.003187 0.004558 0.02984
worst radius 569.0 16.269190 4.833242 7.930000 13.010000 14.970000 18.790000 36.04000
worst texture 569.0 25.677223 6.146258 12.020000 21.080000 25.410000 29.720000 49.54000
worst perimeter 569.0 107.261213 33.602542 50.410000 84.110000 97.660000 125.400000 251.20000
worst area 569.0 880.583128 569.356993 185.200000 515.300000 686.500000 1084.000000 4254.00000
worst smoothness 569.0 0.132369 0.022832 0.071170 0.116600 0.131300 0.146000 0.22260
worst compactness 569.0 0.254265 0.157336 0.027290 0.147200 0.211900 0.339100 1.05800
worst concavity 569.0 0.272188 0.208624 0.000000 0.114500 0.226700 0.382900 1.25200
worst concave points 569.0 0.114606 0.065732 0.000000 0.064930 0.099930 0.161400 0.29100
worst symmetry 569.0 0.290076 0.061867 0.156500 0.250400 0.282200 0.317900 0.66380
worst fractal dimension 569.0 0.083946 0.018061 0.055040 0.071460 0.080040 0.092080 0.20750
benign_0__mal_1 569.0 0.627417 0.483918 0.000000 0.000000 1.000000 1.000000 1.00000
In [5]:
sns.countplot(x='benign_0__mal_1',data=data);
In [6]:
data.corr()['benign_0__mal_1'][:-1].sort_values().plot(kind='bar')
Out[6]:
<Axes: >
In [7]:
x = data.drop('benign_0__mal_1', axis=1).values
y = data['benign_0__mal_1'].values
In [8]:
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, random_state=42)
In [9]:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
In [10]:
x_train = scaler.fit_transform(x_train)
x_test = scaler.transform(x_test)
In [11]:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
In [12]:
model = Sequential()
model.add(Dense(30, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam')
In [13]:
model.fit(x=x_train, y=y_train, validation_data=(x_test, y_test), epochs=600)
Epoch 1/600
15/15 [==============================] - 2s 24ms/step - loss: 0.6649 - val_loss: 0.6319
Epoch 2/600
15/15 [==============================] - 0s 6ms/step - loss: 0.6199 - val_loss: 0.5798
Epoch 3/600
15/15 [==============================] - 0s 6ms/step - loss: 0.5653 - val_loss: 0.5170
Epoch 4/600
15/15 [==============================] - 0s 7ms/step - loss: 0.5097 - val_loss: 0.4547
Epoch 5/600
15/15 [==============================] - 0s 7ms/step - loss: 0.4520 - val_loss: 0.3962
Epoch 6/600
15/15 [==============================] - 0s 7ms/step - loss: 0.3988 - val_loss: 0.3442
Epoch 7/600
15/15 [==============================] - 0s 6ms/step - loss: 0.3534 - val_loss: 0.2997
Epoch 8/600
15/15 [==============================] - 0s 7ms/step - loss: 0.3122 - val_loss: 0.2613
Epoch 9/600
15/15 [==============================] - 0s 7ms/step - loss: 0.2793 - val_loss: 0.2297
Epoch 10/600
15/15 [==============================] - 0s 5ms/step - loss: 0.2550 - val_loss: 0.2057
Epoch 11/600
15/15 [==============================] - 0s 5ms/step - loss: 0.2302 - val_loss: 0.1862
Epoch 12/600
15/15 [==============================] - 0s 5ms/step - loss: 0.2133 - val_loss: 0.1722
Epoch 13/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1989 - val_loss: 0.1612
Epoch 14/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1881 - val_loss: 0.1518
Epoch 15/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1781 - val_loss: 0.1422
Epoch 16/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1694 - val_loss: 0.1348
Epoch 17/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1597 - val_loss: 0.1272
Epoch 18/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1514 - val_loss: 0.1214
Epoch 19/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1453 - val_loss: 0.1163
Epoch 20/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1386 - val_loss: 0.1119
Epoch 21/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1330 - val_loss: 0.1073
Epoch 22/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1266 - val_loss: 0.1036
Epoch 23/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1232 - val_loss: 0.0997
Epoch 24/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1165 - val_loss: 0.0965
Epoch 25/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1116 - val_loss: 0.0931
Epoch 26/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1075 - val_loss: 0.0898
Epoch 27/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1049 - val_loss: 0.0890
Epoch 28/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1014 - val_loss: 0.0856
Epoch 29/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0959 - val_loss: 0.0846
Epoch 30/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0938 - val_loss: 0.0836
Epoch 31/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0931 - val_loss: 0.0808
Epoch 32/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0904 - val_loss: 0.0798
Epoch 33/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0875 - val_loss: 0.0809
Epoch 34/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0832 - val_loss: 0.0766
Epoch 35/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0819 - val_loss: 0.0754
Epoch 36/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0794 - val_loss: 0.0739
Epoch 37/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0803 - val_loss: 0.0766
Epoch 38/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0801 - val_loss: 0.0725
Epoch 39/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0753 - val_loss: 0.0711
Epoch 40/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0722 - val_loss: 0.0711
Epoch 41/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0708 - val_loss: 0.0701
Epoch 42/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0694 - val_loss: 0.0699
Epoch 43/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0680 - val_loss: 0.0693
Epoch 44/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0695 - val_loss: 0.0687
Epoch 45/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0668 - val_loss: 0.0680
Epoch 46/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0653 - val_loss: 0.0676
Epoch 47/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0643 - val_loss: 0.0670
Epoch 48/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0615 - val_loss: 0.0660
Epoch 49/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0610 - val_loss: 0.0674
Epoch 50/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0608 - val_loss: 0.0660
Epoch 51/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0593 - val_loss: 0.0664
Epoch 52/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0587 - val_loss: 0.0661
Epoch 53/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0609 - val_loss: 0.0707
Epoch 54/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0606 - val_loss: 0.0655
Epoch 55/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0576 - val_loss: 0.0642
Epoch 56/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0558 - val_loss: 0.0648
Epoch 57/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0545 - val_loss: 0.0645
Epoch 58/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0567 - val_loss: 0.0684
Epoch 59/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0589 - val_loss: 0.0653
Epoch 60/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0532 - val_loss: 0.0641
Epoch 61/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0562 - val_loss: 0.0645
Epoch 62/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0523 - val_loss: 0.0634
Epoch 63/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0513 - val_loss: 0.0630
Epoch 64/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0513 - val_loss: 0.0629
Epoch 65/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0524 - val_loss: 0.0644
Epoch 66/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0532 - val_loss: 0.0641
Epoch 67/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0509 - val_loss: 0.0653
Epoch 68/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0499 - val_loss: 0.0649
Epoch 69/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0485 - val_loss: 0.0646
Epoch 70/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0483 - val_loss: 0.0637
Epoch 71/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0488 - val_loss: 0.0639
Epoch 72/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0478 - val_loss: 0.0642
Epoch 73/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0508 - val_loss: 0.0662
Epoch 74/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0471 - val_loss: 0.0643
Epoch 75/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0480 - val_loss: 0.0636
Epoch 76/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0457 - val_loss: 0.0646
Epoch 77/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0460 - val_loss: 0.0641
Epoch 78/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0463 - val_loss: 0.0655
Epoch 79/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0479 - val_loss: 0.0641
Epoch 80/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0445 - val_loss: 0.0665
Epoch 81/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0457 - val_loss: 0.0641
Epoch 82/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0447 - val_loss: 0.0651
Epoch 83/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0453 - val_loss: 0.0646
Epoch 84/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0445 - val_loss: 0.0641
Epoch 85/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0435 - val_loss: 0.0638
Epoch 86/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0436 - val_loss: 0.0655
Epoch 87/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0441 - val_loss: 0.0652
Epoch 88/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0474 - val_loss: 0.0636
Epoch 89/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0421 - val_loss: 0.0641
Epoch 90/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0431 - val_loss: 0.0638
Epoch 91/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0472 - val_loss: 0.0702
Epoch 92/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0455 - val_loss: 0.0648
Epoch 93/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0463 - val_loss: 0.0658
Epoch 94/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0410 - val_loss: 0.0658
Epoch 95/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0476 - val_loss: 0.0654
Epoch 96/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0475 - val_loss: 0.0668
Epoch 97/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0395 - val_loss: 0.0660
Epoch 98/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0425 - val_loss: 0.0655
Epoch 99/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0390 - val_loss: 0.0652
Epoch 100/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0392 - val_loss: 0.0667
Epoch 101/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0393 - val_loss: 0.0673
Epoch 102/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0389 - val_loss: 0.0670
Epoch 103/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0398 - val_loss: 0.0695
Epoch 104/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0427 - val_loss: 0.0664
Epoch 105/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0452 - val_loss: 0.0698
Epoch 106/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0407 - val_loss: 0.0711
Epoch 107/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0390 - val_loss: 0.0731
Epoch 108/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0397 - val_loss: 0.0672
Epoch 109/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0367 - val_loss: 0.0698
Epoch 110/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0391 - val_loss: 0.0674
Epoch 111/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0435 - val_loss: 0.0705
Epoch 112/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0393 - val_loss: 0.0679
Epoch 113/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0367 - val_loss: 0.0692
Epoch 114/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0360 - val_loss: 0.0687
Epoch 115/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0379 - val_loss: 0.0698
Epoch 116/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0498 - val_loss: 0.0728
Epoch 117/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0411 - val_loss: 0.0726
Epoch 118/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0368 - val_loss: 0.0742
Epoch 119/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0355 - val_loss: 0.0691
Epoch 120/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0347 - val_loss: 0.0692
Epoch 121/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0344 - val_loss: 0.0687
Epoch 122/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0386 - val_loss: 0.0683
Epoch 123/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0360 - val_loss: 0.0745
Epoch 124/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0359 - val_loss: 0.0783
Epoch 125/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0357 - val_loss: 0.0712
Epoch 126/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0347 - val_loss: 0.0708
Epoch 127/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0344 - val_loss: 0.0696
Epoch 128/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0326 - val_loss: 0.0733
Epoch 129/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0359 - val_loss: 0.0698
Epoch 130/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0374 - val_loss: 0.0732
Epoch 131/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0372 - val_loss: 0.0708
Epoch 132/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0339 - val_loss: 0.0707
Epoch 133/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0329 - val_loss: 0.0741
Epoch 134/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0327 - val_loss: 0.0715
Epoch 135/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0314 - val_loss: 0.0735
Epoch 136/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0315 - val_loss: 0.0710
Epoch 137/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0325 - val_loss: 0.0769
Epoch 138/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0308 - val_loss: 0.0715
Epoch 139/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0312 - val_loss: 0.0741
Epoch 140/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0306 - val_loss: 0.0744
Epoch 141/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0326 - val_loss: 0.0725
Epoch 142/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0313 - val_loss: 0.0703
Epoch 143/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0332 - val_loss: 0.0822
Epoch 144/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0409 - val_loss: 0.0736
Epoch 145/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0320 - val_loss: 0.0757
Epoch 146/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0301 - val_loss: 0.0782
Epoch 147/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0305 - val_loss: 0.0742
Epoch 148/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0287 - val_loss: 0.0814
Epoch 149/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0287 - val_loss: 0.0741
Epoch 150/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0289 - val_loss: 0.0837
Epoch 151/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0377 - val_loss: 0.0733
Epoch 152/600
15/15 [==============================] - 0s 14ms/step - loss: 0.0301 - val_loss: 0.0779
Epoch 153/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0280 - val_loss: 0.0827
Epoch 154/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0277 - val_loss: 0.0773
Epoch 155/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0278 - val_loss: 0.0794
Epoch 156/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0290 - val_loss: 0.0759
Epoch 157/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0309 - val_loss: 0.0815
Epoch 158/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0301 - val_loss: 0.0768
Epoch 159/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0270 - val_loss: 0.0837
Epoch 160/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0270 - val_loss: 0.0800
Epoch 161/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0262 - val_loss: 0.0775
Epoch 162/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0261 - val_loss: 0.0881
Epoch 163/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0268 - val_loss: 0.0749
Epoch 164/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0271 - val_loss: 0.0822
Epoch 165/600
15/15 [==============================] - 0s 22ms/step - loss: 0.0251 - val_loss: 0.0767
Epoch 166/600
15/15 [==============================] - 0s 19ms/step - loss: 0.0268 - val_loss: 0.0882
Epoch 167/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0250 - val_loss: 0.0787
Epoch 168/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0245 - val_loss: 0.0820
Epoch 169/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0245 - val_loss: 0.0820
Epoch 170/600
15/15 [==============================] - 0s 23ms/step - loss: 0.0245 - val_loss: 0.0853
Epoch 171/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0249 - val_loss: 0.0805
Epoch 172/600
15/15 [==============================] - 0s 18ms/step - loss: 0.0237 - val_loss: 0.0838
Epoch 173/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0235 - val_loss: 0.0823
Epoch 174/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0233 - val_loss: 0.0878
Epoch 175/600
15/15 [==============================] - 0s 14ms/step - loss: 0.0235 - val_loss: 0.0829
Epoch 176/600
15/15 [==============================] - 0s 19ms/step - loss: 0.0239 - val_loss: 0.0881
Epoch 177/600
15/15 [==============================] - 0s 20ms/step - loss: 0.0248 - val_loss: 0.0832
Epoch 178/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0296 - val_loss: 0.0893
Epoch 179/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0232 - val_loss: 0.0780
Epoch 180/600
15/15 [==============================] - 0s 26ms/step - loss: 0.0227 - val_loss: 0.0860
Epoch 181/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0231 - val_loss: 0.0812
Epoch 182/600
15/15 [==============================] - 0s 27ms/step - loss: 0.0230 - val_loss: 0.0849
Epoch 183/600
15/15 [==============================] - 0s 18ms/step - loss: 0.0221 - val_loss: 0.0879
Epoch 184/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0222 - val_loss: 0.0853
Epoch 185/600
15/15 [==============================] - 0s 14ms/step - loss: 0.0252 - val_loss: 0.0899
Epoch 186/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0218 - val_loss: 0.0920
Epoch 187/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0208 - val_loss: 0.0925
Epoch 188/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0217 - val_loss: 0.1012
Epoch 189/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0220 - val_loss: 0.0891
Epoch 190/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0206 - val_loss: 0.0948
Epoch 191/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0209 - val_loss: 0.0939
Epoch 192/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0235 - val_loss: 0.1056
Epoch 193/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0221 - val_loss: 0.0906
Epoch 194/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0199 - val_loss: 0.0956
Epoch 195/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0200 - val_loss: 0.0941
Epoch 196/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0190 - val_loss: 0.0990
Epoch 197/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0193 - val_loss: 0.0890
Epoch 198/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0209 - val_loss: 0.1141
Epoch 199/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0229 - val_loss: 0.0897
Epoch 200/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0194 - val_loss: 0.1155
Epoch 201/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0215 - val_loss: 0.0936
Epoch 202/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0251 - val_loss: 0.1095
Epoch 203/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0224 - val_loss: 0.0896
Epoch 204/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0200 - val_loss: 0.0909
Epoch 205/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0182 - val_loss: 0.1080
Epoch 206/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0248 - val_loss: 0.0957
Epoch 207/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0256 - val_loss: 0.1063
Epoch 208/600
15/15 [==============================] - 0s 18ms/step - loss: 0.0186 - val_loss: 0.1057
Epoch 209/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0240 - val_loss: 0.0947
Epoch 210/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0180 - val_loss: 0.1030
Epoch 211/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0172 - val_loss: 0.0925
Epoch 212/600
15/15 [==============================] - 0s 23ms/step - loss: 0.0178 - val_loss: 0.0938
Epoch 213/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0200 - val_loss: 0.1074
Epoch 214/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0171 - val_loss: 0.0963
Epoch 215/600
15/15 [==============================] - 0s 17ms/step - loss: 0.0161 - val_loss: 0.1046
Epoch 216/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0167 - val_loss: 0.0990
Epoch 217/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0197 - val_loss: 0.1260
Epoch 218/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0185 - val_loss: 0.0982
Epoch 219/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0196 - val_loss: 0.1292
Epoch 220/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0195 - val_loss: 0.0979
Epoch 221/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0159 - val_loss: 0.1101
Epoch 222/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0174 - val_loss: 0.1060
Epoch 223/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0184 - val_loss: 0.0997
Epoch 224/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0164 - val_loss: 0.1052
Epoch 225/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0147 - val_loss: 0.1137
Epoch 226/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0149 - val_loss: 0.1084
Epoch 227/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0145 - val_loss: 0.1115
Epoch 228/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0149 - val_loss: 0.1107
Epoch 229/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0141 - val_loss: 0.1069
Epoch 230/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0177 - val_loss: 0.1329
Epoch 231/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0166 - val_loss: 0.1053
Epoch 232/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0156 - val_loss: 0.1153
Epoch 233/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0138 - val_loss: 0.1092
Epoch 234/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0141 - val_loss: 0.1145
Epoch 235/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0133 - val_loss: 0.1068
Epoch 236/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0180 - val_loss: 0.1395
Epoch 237/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0142 - val_loss: 0.1094
Epoch 238/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0134 - val_loss: 0.1336
Epoch 239/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0189 - val_loss: 0.1059
Epoch 240/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0146 - val_loss: 0.1233
Epoch 241/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0133 - val_loss: 0.1233
Epoch 242/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0132 - val_loss: 0.1158
Epoch 243/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0124 - val_loss: 0.1242
Epoch 244/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0127 - val_loss: 0.1180
Epoch 245/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0125 - val_loss: 0.1162
Epoch 246/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0134 - val_loss: 0.1144
Epoch 247/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0122 - val_loss: 0.1201
Epoch 248/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0122 - val_loss: 0.1267
Epoch 249/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0120 - val_loss: 0.1178
Epoch 250/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0116 - val_loss: 0.1208
Epoch 251/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0121 - val_loss: 0.1311
Epoch 252/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0121 - val_loss: 0.1201
Epoch 253/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0133 - val_loss: 0.1473
Epoch 254/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0134 - val_loss: 0.1272
Epoch 255/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0116 - val_loss: 0.1194
Epoch 256/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0125 - val_loss: 0.1266
Epoch 257/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0149 - val_loss: 0.1183
Epoch 258/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0123 - val_loss: 0.1423
Epoch 259/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0122 - val_loss: 0.1212
Epoch 260/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0109 - val_loss: 0.1317
Epoch 261/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0123 - val_loss: 0.1289
Epoch 262/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0116 - val_loss: 0.1259
Epoch 263/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0115 - val_loss: 0.1388
Epoch 264/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0123 - val_loss: 0.1241
Epoch 265/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0113 - val_loss: 0.1461
Epoch 266/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0110 - val_loss: 0.1316
Epoch 267/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0100 - val_loss: 0.1362
Epoch 268/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0100 - val_loss: 0.1394
Epoch 269/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0106 - val_loss: 0.1272
Epoch 270/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0105 - val_loss: 0.1363
Epoch 271/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0097 - val_loss: 0.1395
Epoch 272/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0103 - val_loss: 0.1320
Epoch 273/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0102 - val_loss: 0.1436
Epoch 274/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0101 - val_loss: 0.1388
Epoch 275/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0095 - val_loss: 0.1335
Epoch 276/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0106 - val_loss: 0.1547
Epoch 277/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0103 - val_loss: 0.1335
Epoch 278/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0096 - val_loss: 0.1401
Epoch 279/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0087 - val_loss: 0.1310
Epoch 280/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0100 - val_loss: 0.1560
Epoch 281/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0099 - val_loss: 0.1373
Epoch 282/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0085 - val_loss: 0.1438
Epoch 283/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0095 - val_loss: 0.1322
Epoch 284/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0101 - val_loss: 0.1378
Epoch 285/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0090 - val_loss: 0.1538
Epoch 286/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0088 - val_loss: 0.1366
Epoch 287/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0088 - val_loss: 0.1430
Epoch 288/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0084 - val_loss: 0.1406
Epoch 289/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0085 - val_loss: 0.1508
Epoch 290/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0083 - val_loss: 0.1432
Epoch 291/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0089 - val_loss: 0.1535
Epoch 292/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0081 - val_loss: 0.1390
Epoch 293/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0082 - val_loss: 0.1605
Epoch 294/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0091 - val_loss: 0.1375
Epoch 295/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0087 - val_loss: 0.1723
Epoch 296/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0085 - val_loss: 0.1436
Epoch 297/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0089 - val_loss: 0.1527
Epoch 298/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0084 - val_loss: 0.1680
Epoch 299/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0089 - val_loss: 0.1471
Epoch 300/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0076 - val_loss: 0.1576
Epoch 301/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0073 - val_loss: 0.1558
Epoch 302/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0082 - val_loss: 0.1658
Epoch 303/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0079 - val_loss: 0.1425
Epoch 304/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0096 - val_loss: 0.1614
Epoch 305/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0068 - val_loss: 0.1506
Epoch 306/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0081 - val_loss: 0.1759
Epoch 307/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0070 - val_loss: 0.1465
Epoch 308/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0090 - val_loss: 0.1577
Epoch 309/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0073 - val_loss: 0.1602
Epoch 310/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0071 - val_loss: 0.1632
Epoch 311/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0065 - val_loss: 0.1629
Epoch 312/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0071 - val_loss: 0.1621
Epoch 313/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0064 - val_loss: 0.1559
Epoch 314/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0064 - val_loss: 0.1764
Epoch 315/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0070 - val_loss: 0.1615
Epoch 316/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0062 - val_loss: 0.1626
Epoch 317/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0068 - val_loss: 0.1755
Epoch 318/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0064 - val_loss: 0.1598
Epoch 319/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0067 - val_loss: 0.1780
Epoch 320/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0064 - val_loss: 0.1689
Epoch 321/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0063 - val_loss: 0.1671
Epoch 322/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0061 - val_loss: 0.1625
Epoch 323/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0063 - val_loss: 0.1746
Epoch 324/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0062 - val_loss: 0.1656
Epoch 325/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0061 - val_loss: 0.1740
Epoch 326/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0064 - val_loss: 0.1668
Epoch 327/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0061 - val_loss: 0.1627
Epoch 328/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0058 - val_loss: 0.1708
Epoch 329/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0070 - val_loss: 0.1871
Epoch 330/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0073 - val_loss: 0.1576
Epoch 331/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0058 - val_loss: 0.1789
Epoch 332/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0053 - val_loss: 0.1643
Epoch 333/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0056 - val_loss: 0.1854
Epoch 334/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0055 - val_loss: 0.1601
Epoch 335/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0060 - val_loss: 0.1793
Epoch 336/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0057 - val_loss: 0.1609
Epoch 337/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0062 - val_loss: 0.1882
Epoch 338/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0062 - val_loss: 0.1697
Epoch 339/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0056 - val_loss: 0.1721
Epoch 340/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0069 - val_loss: 0.1865
Epoch 341/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0047 - val_loss: 0.1627
Epoch 342/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0057 - val_loss: 0.2052
Epoch 343/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0065 - val_loss: 0.1753
Epoch 344/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0049 - val_loss: 0.1827
Epoch 345/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0048 - val_loss: 0.1733
Epoch 346/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0051 - val_loss: 0.1812
Epoch 347/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0047 - val_loss: 0.1758
Epoch 348/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0047 - val_loss: 0.1851
Epoch 349/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0046 - val_loss: 0.1742
Epoch 350/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0050 - val_loss: 0.1842
Epoch 351/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0047 - val_loss: 0.1787
Epoch 352/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0046 - val_loss: 0.1793
Epoch 353/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0047 - val_loss: 0.1932
Epoch 354/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0043 - val_loss: 0.1786
Epoch 355/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0052 - val_loss: 0.1912
Epoch 356/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0044 - val_loss: 0.1887
Epoch 357/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0043 - val_loss: 0.1970
Epoch 358/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0051 - val_loss: 0.1783
Epoch 359/600
15/15 [==============================] - 0s 17ms/step - loss: 0.0045 - val_loss: 0.1956
Epoch 360/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0042 - val_loss: 0.1931
Epoch 361/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0043 - val_loss: 0.1995
Epoch 362/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0040 - val_loss: 0.1852
Epoch 363/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0042 - val_loss: 0.1859
Epoch 364/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0039 - val_loss: 0.2005
Epoch 365/600
15/15 [==============================] - 0s 22ms/step - loss: 0.0043 - val_loss: 0.1898
Epoch 366/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0041 - val_loss: 0.1993
Epoch 367/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0038 - val_loss: 0.1822
Epoch 368/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0060 - val_loss: 0.2018
Epoch 369/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0047 - val_loss: 0.2080
Epoch 370/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0050 - val_loss: 0.1893
Epoch 371/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0040 - val_loss: 0.1940
Epoch 372/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0042 - val_loss: 0.2129
Epoch 373/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0044 - val_loss: 0.1815
Epoch 374/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0042 - val_loss: 0.2130
Epoch 375/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0043 - val_loss: 0.2110
Epoch 376/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0036 - val_loss: 0.1914
Epoch 377/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0037 - val_loss: 0.2196
Epoch 378/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0037 - val_loss: 0.1884
Epoch 379/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0038 - val_loss: 0.2061
Epoch 380/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0034 - val_loss: 0.1919
Epoch 381/600
15/15 [==============================] - 0s 21ms/step - loss: 0.0038 - val_loss: 0.2012
Epoch 382/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0035 - val_loss: 0.2030
Epoch 383/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0034 - val_loss: 0.1968
Epoch 384/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0048 - val_loss: 0.2147
Epoch 385/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0046 - val_loss: 0.2041
Epoch 386/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0034 - val_loss: 0.1951
Epoch 387/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0038 - val_loss: 0.2199
Epoch 388/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0033 - val_loss: 0.2058
Epoch 389/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0034 - val_loss: 0.2104
Epoch 390/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0031 - val_loss: 0.2130
Epoch 391/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0031 - val_loss: 0.2182
Epoch 392/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0033 - val_loss: 0.2092
Epoch 393/600
15/15 [==============================] - 0s 28ms/step - loss: 0.0039 - val_loss: 0.2183
Epoch 394/600
15/15 [==============================] - 0s 21ms/step - loss: 0.0045 - val_loss: 0.2081
Epoch 395/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0031 - val_loss: 0.2137
Epoch 396/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0031 - val_loss: 0.2127
Epoch 397/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0030 - val_loss: 0.2113
Epoch 398/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0039 - val_loss: 0.2352
Epoch 399/600
15/15 [==============================] - 0s 20ms/step - loss: 0.0031 - val_loss: 0.2085
Epoch 400/600
15/15 [==============================] - 1s 46ms/step - loss: 0.0028 - val_loss: 0.2151
Epoch 401/600
15/15 [==============================] - 0s 21ms/step - loss: 0.0029 - val_loss: 0.2284
Epoch 402/600
15/15 [==============================] - 0s 27ms/step - loss: 0.0045 - val_loss: 0.2092
Epoch 403/600
15/15 [==============================] - 0s 25ms/step - loss: 0.0031 - val_loss: 0.2178
Epoch 404/600
15/15 [==============================] - 0s 20ms/step - loss: 0.0031 - val_loss: 0.2254
Epoch 405/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0034 - val_loss: 0.2025
Epoch 406/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0039 - val_loss: 0.2328
Epoch 407/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0030 - val_loss: 0.2219
Epoch 408/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0026 - val_loss: 0.2190
Epoch 409/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0029 - val_loss: 0.2189
Epoch 410/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0027 - val_loss: 0.2275
Epoch 411/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0025 - val_loss: 0.2262
Epoch 412/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0037 - val_loss: 0.2167
Epoch 413/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0030 - val_loss: 0.2378
Epoch 414/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0034 - val_loss: 0.2156
Epoch 415/600
15/15 [==============================] - 0s 14ms/step - loss: 0.0024 - val_loss: 0.2241
Epoch 416/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0024 - val_loss: 0.2239
Epoch 417/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0023 - val_loss: 0.2230
Epoch 418/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0029 - val_loss: 0.2311
Epoch 419/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0023 - val_loss: 0.2114
Epoch 420/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0027 - val_loss: 0.2412
Epoch 421/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0024 - val_loss: 0.2167
Epoch 422/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0025 - val_loss: 0.2353
Epoch 423/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0024 - val_loss: 0.2205
Epoch 424/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0024 - val_loss: 0.2359
Epoch 425/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0023 - val_loss: 0.2350
Epoch 426/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0024 - val_loss: 0.2200
Epoch 427/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0023 - val_loss: 0.2458
Epoch 428/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0023 - val_loss: 0.2320
Epoch 429/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0026 - val_loss: 0.2593
Epoch 430/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0031 - val_loss: 0.2212
Epoch 431/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0022 - val_loss: 0.2280
Epoch 432/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0035 - val_loss: 0.2527
Epoch 433/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0023 - val_loss: 0.2301
Epoch 434/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0026 - val_loss: 0.2249
Epoch 435/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0023 - val_loss: 0.2371
Epoch 436/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0020 - val_loss: 0.2348
Epoch 437/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0021 - val_loss: 0.2433
Epoch 438/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0034 - val_loss: 0.2082
Epoch 439/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0074 - val_loss: 0.4150
Epoch 440/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0266 - val_loss: 0.3076
Epoch 441/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0088 - val_loss: 0.2046
Epoch 442/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0061 - val_loss: 0.2495
Epoch 443/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0033 - val_loss: 0.2406
Epoch 444/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0025 - val_loss: 0.2456
Epoch 445/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0022 - val_loss: 0.2462
Epoch 446/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0020 - val_loss: 0.2446
Epoch 447/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0022 - val_loss: 0.2462
Epoch 448/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0021 - val_loss: 0.2471
Epoch 449/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0018 - val_loss: 0.2560
Epoch 450/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0020 - val_loss: 0.2528
Epoch 451/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0019 - val_loss: 0.2494
Epoch 452/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0018 - val_loss: 0.2490
Epoch 453/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0017 - val_loss: 0.2486
Epoch 454/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0018 - val_loss: 0.2479
Epoch 455/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0017 - val_loss: 0.2508
Epoch 456/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0016 - val_loss: 0.2576
Epoch 457/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0018 - val_loss: 0.2618
Epoch 458/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0022 - val_loss: 0.2455
Epoch 459/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0018 - val_loss: 0.2498
Epoch 460/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0016 - val_loss: 0.2575
Epoch 461/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0016 - val_loss: 0.2557
Epoch 462/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0018 - val_loss: 0.2498
Epoch 463/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0018 - val_loss: 0.2615
Epoch 464/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0016 - val_loss: 0.2592
Epoch 465/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0016 - val_loss: 0.2595
Epoch 466/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0015 - val_loss: 0.2553
Epoch 467/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0016 - val_loss: 0.2572
Epoch 468/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0018 - val_loss: 0.2720
Epoch 469/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0017 - val_loss: 0.2526
Epoch 470/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0016 - val_loss: 0.2562
Epoch 471/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0016 - val_loss: 0.2704
Epoch 472/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0017 - val_loss: 0.2561
Epoch 473/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0016 - val_loss: 0.2548
Epoch 474/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0016 - val_loss: 0.2602
Epoch 475/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0014 - val_loss: 0.2651
Epoch 476/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0016 - val_loss: 0.2531
Epoch 477/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0015 - val_loss: 0.2576
Epoch 478/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0015 - val_loss: 0.2601
Epoch 479/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0015 - val_loss: 0.2608
Epoch 480/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0019 - val_loss: 0.2638
Epoch 481/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0018 - val_loss: 0.2519
Epoch 482/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0018 - val_loss: 0.2814
Epoch 483/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0015 - val_loss: 0.2544
Epoch 484/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0015 - val_loss: 0.2655
Epoch 485/600
15/15 [==============================] - 0s 14ms/step - loss: 0.0014 - val_loss: 0.2643
Epoch 486/600
15/15 [==============================] - 0s 23ms/step - loss: 0.0013 - val_loss: 0.2680
Epoch 487/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0017 - val_loss: 0.2757
Epoch 488/600
15/15 [==============================] - 0s 18ms/step - loss: 0.0019 - val_loss: 0.2642
Epoch 489/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0016 - val_loss: 0.2602
Epoch 490/600
15/15 [==============================] - 1s 46ms/step - loss: 0.0025 - val_loss: 0.2774
Epoch 491/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0013 - val_loss: 0.2630
Epoch 492/600
15/15 [==============================] - 0s 19ms/step - loss: 0.0013 - val_loss: 0.2682
Epoch 493/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0014 - val_loss: 0.2733
Epoch 494/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0015 - val_loss: 0.2669
Epoch 495/600
15/15 [==============================] - 0s 17ms/step - loss: 0.0013 - val_loss: 0.2747
Epoch 496/600
15/15 [==============================] - 0s 16ms/step - loss: 0.0012 - val_loss: 0.2709
Epoch 497/600
15/15 [==============================] - 0s 29ms/step - loss: 0.0012 - val_loss: 0.2711
Epoch 498/600
15/15 [==============================] - 0s 14ms/step - loss: 0.0012 - val_loss: 0.2721
Epoch 499/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0012 - val_loss: 0.2673
Epoch 500/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0011 - val_loss: 0.2769
Epoch 501/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0012 - val_loss: 0.2712
Epoch 502/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0014 - val_loss: 0.2746
Epoch 503/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0011 - val_loss: 0.2721
Epoch 504/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0012 - val_loss: 0.2678
Epoch 505/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0012 - val_loss: 0.2733
Epoch 506/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0011 - val_loss: 0.2755
Epoch 507/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0012 - val_loss: 0.2651
Epoch 508/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0013 - val_loss: 0.2878
Epoch 509/600
15/15 [==============================] - 1s 37ms/step - loss: 0.0016 - val_loss: 0.2644
Epoch 510/600
15/15 [==============================] - 0s 21ms/step - loss: 0.0015 - val_loss: 0.2807
Epoch 511/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0010 - val_loss: 0.2713
Epoch 512/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0011 - val_loss: 0.2746
Epoch 513/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0010 - val_loss: 0.2808
Epoch 514/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0010 - val_loss: 0.2747
Epoch 515/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0013 - val_loss: 0.2935
Epoch 516/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0013 - val_loss: 0.2716
Epoch 517/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0015 - val_loss: 0.2704
Epoch 518/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0012 - val_loss: 0.2859
Epoch 519/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0011 - val_loss: 0.2741
Epoch 520/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0010 - val_loss: 0.2858
Epoch 521/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0011 - val_loss: 0.2728
Epoch 522/600
15/15 [==============================] - 0s 10ms/step - loss: 9.9242e-04 - val_loss: 0.2857
Epoch 523/600
15/15 [==============================] - 0s 11ms/step - loss: 9.9168e-04 - val_loss: 0.2784
Epoch 524/600
15/15 [==============================] - 0s 12ms/step - loss: 9.3395e-04 - val_loss: 0.2773
Epoch 525/600
15/15 [==============================] - 0s 8ms/step - loss: 9.4250e-04 - val_loss: 0.2813
Epoch 526/600
15/15 [==============================] - 0s 8ms/step - loss: 9.9577e-04 - val_loss: 0.2788
Epoch 527/600
15/15 [==============================] - 0s 7ms/step - loss: 9.5923e-04 - val_loss: 0.2802
Epoch 528/600
15/15 [==============================] - 0s 8ms/step - loss: 9.7047e-04 - val_loss: 0.2806
Epoch 529/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0010 - val_loss: 0.2885
Epoch 530/600
15/15 [==============================] - 0s 11ms/step - loss: 9.5432e-04 - val_loss: 0.2755
Epoch 531/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0010 - val_loss: 0.2890
Epoch 532/600
15/15 [==============================] - 0s 11ms/step - loss: 8.5708e-04 - val_loss: 0.2762
Epoch 533/600
15/15 [==============================] - 0s 9ms/step - loss: 9.7404e-04 - val_loss: 0.2932
Epoch 534/600
15/15 [==============================] - 0s 7ms/step - loss: 9.4466e-04 - val_loss: 0.2859
Epoch 535/600
15/15 [==============================] - 0s 7ms/step - loss: 9.5139e-04 - val_loss: 0.2867
Epoch 536/600
15/15 [==============================] - 0s 8ms/step - loss: 9.5536e-04 - val_loss: 0.2779
Epoch 537/600
15/15 [==============================] - 0s 16ms/step - loss: 9.4992e-04 - val_loss: 0.2962
Epoch 538/600
15/15 [==============================] - 0s 14ms/step - loss: 9.1500e-04 - val_loss: 0.2857
Epoch 539/600
15/15 [==============================] - 0s 14ms/step - loss: 9.8641e-04 - val_loss: 0.2901
Epoch 540/600
15/15 [==============================] - 0s 15ms/step - loss: 0.0013 - val_loss: 0.3153
Epoch 541/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0018 - val_loss: 0.2597
Epoch 542/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0018 - val_loss: 0.2852
Epoch 543/600
15/15 [==============================] - 0s 9ms/step - loss: 8.4766e-04 - val_loss: 0.2901
Epoch 544/600
15/15 [==============================] - 0s 10ms/step - loss: 8.6434e-04 - val_loss: 0.2942
Epoch 545/600
15/15 [==============================] - 0s 13ms/step - loss: 8.4590e-04 - val_loss: 0.2908
Epoch 546/600
15/15 [==============================] - 0s 8ms/step - loss: 8.1135e-04 - val_loss: 0.2907
Epoch 547/600
15/15 [==============================] - 0s 8ms/step - loss: 8.2484e-04 - val_loss: 0.2916
Epoch 548/600
15/15 [==============================] - 0s 9ms/step - loss: 8.6365e-04 - val_loss: 0.2927
Epoch 549/600
15/15 [==============================] - 0s 9ms/step - loss: 8.1643e-04 - val_loss: 0.2943
Epoch 550/600
15/15 [==============================] - 0s 9ms/step - loss: 9.0202e-04 - val_loss: 0.2950
Epoch 551/600
15/15 [==============================] - 0s 11ms/step - loss: 9.9143e-04 - val_loss: 0.2821
Epoch 552/600
15/15 [==============================] - 0s 12ms/step - loss: 9.2664e-04 - val_loss: 0.2901
Epoch 553/600
15/15 [==============================] - 0s 10ms/step - loss: 7.5374e-04 - val_loss: 0.2890
Epoch 554/600
15/15 [==============================] - 0s 11ms/step - loss: 7.9077e-04 - val_loss: 0.2959
Epoch 555/600
15/15 [==============================] - 0s 10ms/step - loss: 7.7441e-04 - val_loss: 0.2959
Epoch 556/600
15/15 [==============================] - 0s 9ms/step - loss: 7.2620e-04 - val_loss: 0.2893
Epoch 557/600
15/15 [==============================] - 0s 8ms/step - loss: 7.6446e-04 - val_loss: 0.3015
Epoch 558/600
15/15 [==============================] - 0s 6ms/step - loss: 7.1794e-04 - val_loss: 0.2964
Epoch 559/600
15/15 [==============================] - 0s 5ms/step - loss: 7.8442e-04 - val_loss: 0.2946
Epoch 560/600
15/15 [==============================] - 0s 7ms/step - loss: 7.2334e-04 - val_loss: 0.3067
Epoch 561/600
15/15 [==============================] - 0s 5ms/step - loss: 7.6359e-04 - val_loss: 0.2900
Epoch 562/600
15/15 [==============================] - 0s 7ms/step - loss: 6.8092e-04 - val_loss: 0.3018
Epoch 563/600
15/15 [==============================] - 0s 6ms/step - loss: 7.0018e-04 - val_loss: 0.3009
Epoch 564/600
15/15 [==============================] - 0s 7ms/step - loss: 7.3212e-04 - val_loss: 0.2977
Epoch 565/600
15/15 [==============================] - 0s 8ms/step - loss: 6.8915e-04 - val_loss: 0.2994
Epoch 566/600
15/15 [==============================] - 0s 6ms/step - loss: 6.8366e-04 - val_loss: 0.2990
Epoch 567/600
15/15 [==============================] - 0s 7ms/step - loss: 6.9534e-04 - val_loss: 0.2984
Epoch 568/600
15/15 [==============================] - 0s 6ms/step - loss: 7.7296e-04 - val_loss: 0.2961
Epoch 569/600
15/15 [==============================] - 0s 6ms/step - loss: 6.9852e-04 - val_loss: 0.3068
Epoch 570/600
15/15 [==============================] - 0s 6ms/step - loss: 7.1999e-04 - val_loss: 0.3006
Epoch 571/600
15/15 [==============================] - 0s 8ms/step - loss: 6.5149e-04 - val_loss: 0.3057
Epoch 572/600
15/15 [==============================] - 0s 6ms/step - loss: 6.8190e-04 - val_loss: 0.3058
Epoch 573/600
15/15 [==============================] - 0s 6ms/step - loss: 6.9828e-04 - val_loss: 0.2978
Epoch 574/600
15/15 [==============================] - 0s 6ms/step - loss: 6.9211e-04 - val_loss: 0.3106
Epoch 575/600
15/15 [==============================] - 0s 6ms/step - loss: 8.4102e-04 - val_loss: 0.3021
Epoch 576/600
15/15 [==============================] - 0s 6ms/step - loss: 7.3322e-04 - val_loss: 0.2916
Epoch 577/600
15/15 [==============================] - 0s 5ms/step - loss: 7.4751e-04 - val_loss: 0.3068
Epoch 578/600
15/15 [==============================] - 0s 5ms/step - loss: 6.3847e-04 - val_loss: 0.2974
Epoch 579/600
15/15 [==============================] - 0s 6ms/step - loss: 7.1483e-04 - val_loss: 0.3030
Epoch 580/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0012 - val_loss: 0.3258
Epoch 581/600
15/15 [==============================] - 0s 6ms/step - loss: 7.6783e-04 - val_loss: 0.3111
Epoch 582/600
15/15 [==============================] - 0s 9ms/step - loss: 5.8668e-04 - val_loss: 0.3150
Epoch 583/600
15/15 [==============================] - 0s 9ms/step - loss: 5.9852e-04 - val_loss: 0.3136
Epoch 584/600
15/15 [==============================] - 0s 10ms/step - loss: 6.0574e-04 - val_loss: 0.3113
Epoch 585/600
15/15 [==============================] - 0s 10ms/step - loss: 6.8632e-04 - val_loss: 0.3140
Epoch 586/600
15/15 [==============================] - 0s 10ms/step - loss: 6.2093e-04 - val_loss: 0.3033
Epoch 587/600
15/15 [==============================] - 0s 12ms/step - loss: 5.8883e-04 - val_loss: 0.3185
Epoch 588/600
15/15 [==============================] - 0s 6ms/step - loss: 7.7442e-04 - val_loss: 0.3025
Epoch 589/600
15/15 [==============================] - 0s 8ms/step - loss: 6.4632e-04 - val_loss: 0.3116
Epoch 590/600
15/15 [==============================] - 0s 8ms/step - loss: 5.8365e-04 - val_loss: 0.3122
Epoch 591/600
15/15 [==============================] - 0s 6ms/step - loss: 6.0909e-04 - val_loss: 0.3126
Epoch 592/600
15/15 [==============================] - 0s 7ms/step - loss: 5.5198e-04 - val_loss: 0.3134
Epoch 593/600
15/15 [==============================] - 0s 7ms/step - loss: 5.6166e-04 - val_loss: 0.3096
Epoch 594/600
15/15 [==============================] - 0s 6ms/step - loss: 5.6706e-04 - val_loss: 0.3189
Epoch 595/600
15/15 [==============================] - 0s 7ms/step - loss: 6.2608e-04 - val_loss: 0.3259
Epoch 596/600
15/15 [==============================] - 0s 8ms/step - loss: 6.2328e-04 - val_loss: 0.3083
Epoch 597/600
15/15 [==============================] - 0s 9ms/step - loss: 5.7743e-04 - val_loss: 0.3202
Epoch 598/600
15/15 [==============================] - 0s 10ms/step - loss: 5.3605e-04 - val_loss: 0.3139
Epoch 599/600
15/15 [==============================] - 0s 8ms/step - loss: 5.2770e-04 - val_loss: 0.3153
Epoch 600/600
15/15 [==============================] - 0s 8ms/step - loss: 5.4030e-04 - val_loss: 0.3126
Out[13]:
<keras.callbacks.History at 0x190194fb650>
In [14]:
loss = pd.DataFrame(model.history.history)
In [15]:
loss.plot()
Out[15]:
<Axes: >
In [16]:
prediction = (model.predict(x_test) > 0.5).astype('int32')
4/4 [==============================] - 0s 4ms/step
In [17]:
print(classification_report(y_pred=prediction, y_true=y_test))
              precision    recall  f1-score   support

           0       0.89      0.95      0.92        43
           1       0.97      0.93      0.95        71

    accuracy                           0.94       114
   macro avg       0.93      0.94      0.94       114
weighted avg       0.94      0.94      0.94       114

In [18]:
ConfusionMatrixDisplay.from_predictions(y_true=y_test, y_pred=prediction)
Out[18]:
<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x19021060650>
In [19]:
model = Sequential()
model.add(Dense(30, activation='relu'))
model.add(Dense(15, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam')
In [20]:
from tensorflow.keras.callbacks import EarlyStopping
In [21]:
# help(EarlyStopping)
In [22]:
early_stop = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=25)
In [23]:
model.fit(x=x_train, y=y_train, validation_data=(x_test, y_test), epochs=600, verbose=1,callbacks=[early_stop])
Epoch 1/600
15/15 [==============================] - 3s 37ms/step - loss: 0.6920 - val_loss: 0.6697
Epoch 2/600
15/15 [==============================] - 0s 8ms/step - loss: 0.6574 - val_loss: 0.6322
Epoch 3/600
15/15 [==============================] - 0s 6ms/step - loss: 0.6229 - val_loss: 0.5920
Epoch 4/600
15/15 [==============================] - 0s 5ms/step - loss: 0.5862 - val_loss: 0.5507
Epoch 5/600
15/15 [==============================] - 0s 7ms/step - loss: 0.5467 - val_loss: 0.5031
Epoch 6/600
15/15 [==============================] - 0s 6ms/step - loss: 0.4961 - val_loss: 0.4488
Epoch 7/600
15/15 [==============================] - 0s 5ms/step - loss: 0.4424 - val_loss: 0.3919
Epoch 8/600
15/15 [==============================] - 0s 6ms/step - loss: 0.3905 - val_loss: 0.3398
Epoch 9/600
15/15 [==============================] - 0s 6ms/step - loss: 0.3436 - val_loss: 0.2958
Epoch 10/600
15/15 [==============================] - 0s 5ms/step - loss: 0.3056 - val_loss: 0.2611
Epoch 11/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2726 - val_loss: 0.2308
Epoch 12/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2484 - val_loss: 0.2068
Epoch 13/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2293 - val_loss: 0.1884
Epoch 14/600
15/15 [==============================] - 0s 5ms/step - loss: 0.2113 - val_loss: 0.1740
Epoch 15/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1982 - val_loss: 0.1607
Epoch 16/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1854 - val_loss: 0.1506
Epoch 17/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1802 - val_loss: 0.1424
Epoch 18/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1688 - val_loss: 0.1344
Epoch 19/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1589 - val_loss: 0.1274
Epoch 20/600
15/15 [==============================] - 0s 8ms/step - loss: 0.1515 - val_loss: 0.1216
Epoch 21/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1464 - val_loss: 0.1179
Epoch 22/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1441 - val_loss: 0.1142
Epoch 23/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1339 - val_loss: 0.1074
Epoch 24/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1281 - val_loss: 0.1038
Epoch 25/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1261 - val_loss: 0.1004
Epoch 26/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1203 - val_loss: 0.0967
Epoch 27/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1148 - val_loss: 0.0936
Epoch 28/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1141 - val_loss: 0.0913
Epoch 29/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1072 - val_loss: 0.0902
Epoch 30/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1043 - val_loss: 0.0868
Epoch 31/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1010 - val_loss: 0.0849
Epoch 32/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0977 - val_loss: 0.0835
Epoch 33/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1002 - val_loss: 0.0814
Epoch 34/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0993 - val_loss: 0.0824
Epoch 35/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0928 - val_loss: 0.0785
Epoch 36/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0891 - val_loss: 0.0779
Epoch 37/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0883 - val_loss: 0.0767
Epoch 38/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0893 - val_loss: 0.0788
Epoch 39/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0864 - val_loss: 0.0740
Epoch 40/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0823 - val_loss: 0.0730
Epoch 41/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0796 - val_loss: 0.0723
Epoch 42/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0780 - val_loss: 0.0719
Epoch 43/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0761 - val_loss: 0.0707
Epoch 44/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0751 - val_loss: 0.0701
Epoch 45/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0746 - val_loss: 0.0720
Epoch 46/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0738 - val_loss: 0.0693
Epoch 47/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0718 - val_loss: 0.0682
Epoch 48/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0702 - val_loss: 0.0676
Epoch 49/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0711 - val_loss: 0.0680
Epoch 50/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0683 - val_loss: 0.0677
Epoch 51/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0670 - val_loss: 0.0662
Epoch 52/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0670 - val_loss: 0.0655
Epoch 53/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0668 - val_loss: 0.0668
Epoch 54/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0659 - val_loss: 0.0648
Epoch 55/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0643 - val_loss: 0.0639
Epoch 56/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0628 - val_loss: 0.0633
Epoch 57/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0636 - val_loss: 0.0628
Epoch 58/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0631 - val_loss: 0.0652
Epoch 59/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0614 - val_loss: 0.0639
Epoch 60/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0600 - val_loss: 0.0627
Epoch 61/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0596 - val_loss: 0.0635
Epoch 62/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0619 - val_loss: 0.0619
Epoch 63/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0584 - val_loss: 0.0645
Epoch 64/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0581 - val_loss: 0.0623
Epoch 65/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0588 - val_loss: 0.0631
Epoch 66/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0576 - val_loss: 0.0614
Epoch 67/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0579 - val_loss: 0.0655
Epoch 68/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0603 - val_loss: 0.0608
Epoch 69/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0594 - val_loss: 0.0668
Epoch 70/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0570 - val_loss: 0.0609
Epoch 71/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0560 - val_loss: 0.0625
Epoch 72/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0544 - val_loss: 0.0610
Epoch 73/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0548 - val_loss: 0.0608
Epoch 74/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0546 - val_loss: 0.0616
Epoch 75/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0533 - val_loss: 0.0607
Epoch 76/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0566 - val_loss: 0.0653
Epoch 77/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0519 - val_loss: 0.0592
Epoch 78/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0556 - val_loss: 0.0593
Epoch 79/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0521 - val_loss: 0.0602
Epoch 80/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0529 - val_loss: 0.0584
Epoch 81/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0555 - val_loss: 0.0603
Epoch 82/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0506 - val_loss: 0.0589
Epoch 83/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0505 - val_loss: 0.0598
Epoch 84/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0495 - val_loss: 0.0595
Epoch 85/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0501 - val_loss: 0.0590
Epoch 86/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0494 - val_loss: 0.0589
Epoch 87/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0490 - val_loss: 0.0589
Epoch 88/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0490 - val_loss: 0.0612
Epoch 89/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0533 - val_loss: 0.0585
Epoch 90/600
15/15 [==============================] - 0s 12ms/step - loss: 0.0621 - val_loss: 0.0641
Epoch 91/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0647 - val_loss: 0.0592
Epoch 92/600
15/15 [==============================] - 0s 13ms/step - loss: 0.0559 - val_loss: 0.0613
Epoch 93/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0495 - val_loss: 0.0600
Epoch 94/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0502 - val_loss: 0.0633
Epoch 95/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0506 - val_loss: 0.0594
Epoch 96/600
15/15 [==============================] - 0s 11ms/step - loss: 0.0479 - val_loss: 0.0597
Epoch 97/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0474 - val_loss: 0.0616
Epoch 98/600
15/15 [==============================] - 0s 10ms/step - loss: 0.0463 - val_loss: 0.0596
Epoch 99/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0513 - val_loss: 0.0645
Epoch 100/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0518 - val_loss: 0.0605
Epoch 101/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0455 - val_loss: 0.0609
Epoch 102/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0455 - val_loss: 0.0608
Epoch 103/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0458 - val_loss: 0.0619
Epoch 104/600
15/15 [==============================] - 0s 8ms/step - loss: 0.0445 - val_loss: 0.0612
Epoch 105/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0447 - val_loss: 0.0608
Epoch 105: early stopping
Out[23]:
<keras.callbacks.History at 0x1902340f250>
In [24]:
loss = pd.DataFrame(model.history.history)
In [25]:
loss.plot()
Out[25]:
<Axes: >
In [26]:
prediction = (model.predict(x_test) > 0.5).astype('int32')
4/4 [==============================] - 0s 2ms/step
In [27]:
print(classification_report(y_pred=prediction, y_true=y_test))
              precision    recall  f1-score   support

           0       0.95      0.98      0.97        43
           1       0.99      0.97      0.98        71

    accuracy                           0.97       114
   macro avg       0.97      0.97      0.97       114
weighted avg       0.97      0.97      0.97       114

In [28]:
ConfusionMatrixDisplay.from_predictions(y_true=y_test, y_pred=prediction)
Out[28]:
<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1902467fed0>
In [29]:
model = Sequential()
model.add(Dense(30,activation='relu'))
model.add(Dropout(0.5))

model.add(Dense(15,activation='relu'))
model.add(Dropout(0.5))

model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam')
In [30]:
model.fit(x=x_train,y=y_train, epochs=600, validation_data=(x_test, y_test), 
          verbose=1, callbacks=[early_stop])
Epoch 1/600
15/15 [==============================] - 2s 21ms/step - loss: 0.6787 - val_loss: 0.6557
Epoch 2/600
15/15 [==============================] - 0s 7ms/step - loss: 0.6716 - val_loss: 0.6246
Epoch 3/600
15/15 [==============================] - 0s 7ms/step - loss: 0.6495 - val_loss: 0.5981
Epoch 4/600
15/15 [==============================] - 0s 6ms/step - loss: 0.6143 - val_loss: 0.5724
Epoch 5/600
15/15 [==============================] - 0s 7ms/step - loss: 0.5965 - val_loss: 0.5461
Epoch 6/600
15/15 [==============================] - 0s 7ms/step - loss: 0.5975 - val_loss: 0.5119
Epoch 7/600
15/15 [==============================] - 0s 6ms/step - loss: 0.5817 - val_loss: 0.4870
Epoch 8/600
15/15 [==============================] - 0s 6ms/step - loss: 0.5221 - val_loss: 0.4593
Epoch 9/600
15/15 [==============================] - 0s 6ms/step - loss: 0.5351 - val_loss: 0.4332
Epoch 10/600
15/15 [==============================] - 0s 6ms/step - loss: 0.5028 - val_loss: 0.4101
Epoch 11/600
15/15 [==============================] - 0s 6ms/step - loss: 0.4805 - val_loss: 0.3822
Epoch 12/600
15/15 [==============================] - 0s 6ms/step - loss: 0.4759 - val_loss: 0.3564
Epoch 13/600
15/15 [==============================] - 0s 7ms/step - loss: 0.4511 - val_loss: 0.3351
Epoch 14/600
15/15 [==============================] - 0s 8ms/step - loss: 0.4345 - val_loss: 0.3126
Epoch 15/600
15/15 [==============================] - 0s 6ms/step - loss: 0.3957 - val_loss: 0.2873
Epoch 16/600
15/15 [==============================] - 0s 6ms/step - loss: 0.3769 - val_loss: 0.2644
Epoch 17/600
15/15 [==============================] - 0s 5ms/step - loss: 0.3907 - val_loss: 0.2513
Epoch 18/600
15/15 [==============================] - 0s 5ms/step - loss: 0.3640 - val_loss: 0.2387
Epoch 19/600
15/15 [==============================] - 0s 8ms/step - loss: 0.3367 - val_loss: 0.2276
Epoch 20/600
15/15 [==============================] - 0s 5ms/step - loss: 0.3300 - val_loss: 0.2139
Epoch 21/600
15/15 [==============================] - 0s 6ms/step - loss: 0.3307 - val_loss: 0.2037
Epoch 22/600
15/15 [==============================] - 0s 5ms/step - loss: 0.3152 - val_loss: 0.1924
Epoch 23/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2892 - val_loss: 0.1849
Epoch 24/600
15/15 [==============================] - 0s 7ms/step - loss: 0.2881 - val_loss: 0.1785
Epoch 25/600
15/15 [==============================] - 0s 8ms/step - loss: 0.3079 - val_loss: 0.1710
Epoch 26/600
15/15 [==============================] - 0s 7ms/step - loss: 0.2856 - val_loss: 0.1648
Epoch 27/600
15/15 [==============================] - 0s 10ms/step - loss: 0.2720 - val_loss: 0.1592
Epoch 28/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2642 - val_loss: 0.1545
Epoch 29/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2598 - val_loss: 0.1515
Epoch 30/600
15/15 [==============================] - 0s 5ms/step - loss: 0.2625 - val_loss: 0.1383
Epoch 31/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2674 - val_loss: 0.1327
Epoch 32/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2608 - val_loss: 0.1347
Epoch 33/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2338 - val_loss: 0.1284
Epoch 34/600
15/15 [==============================] - 0s 7ms/step - loss: 0.2491 - val_loss: 0.1210
Epoch 35/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2267 - val_loss: 0.1163
Epoch 36/600
15/15 [==============================] - 0s 5ms/step - loss: 0.2444 - val_loss: 0.1172
Epoch 37/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2293 - val_loss: 0.1217
Epoch 38/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2149 - val_loss: 0.1165
Epoch 39/600
15/15 [==============================] - 0s 7ms/step - loss: 0.2077 - val_loss: 0.1081
Epoch 40/600
15/15 [==============================] - 0s 7ms/step - loss: 0.2237 - val_loss: 0.1066
Epoch 41/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2275 - val_loss: 0.1076
Epoch 42/600
15/15 [==============================] - 0s 6ms/step - loss: 0.2019 - val_loss: 0.1055
Epoch 43/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1975 - val_loss: 0.1030
Epoch 44/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1887 - val_loss: 0.0982
Epoch 45/600
15/15 [==============================] - 0s 9ms/step - loss: 0.1968 - val_loss: 0.0977
Epoch 46/600
15/15 [==============================] - 0s 8ms/step - loss: 0.1765 - val_loss: 0.0925
Epoch 47/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1925 - val_loss: 0.0932
Epoch 48/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1946 - val_loss: 0.0957
Epoch 49/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1919 - val_loss: 0.0945
Epoch 50/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1582 - val_loss: 0.0888
Epoch 51/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1488 - val_loss: 0.0843
Epoch 52/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1671 - val_loss: 0.0819
Epoch 53/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1699 - val_loss: 0.0844
Epoch 54/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1736 - val_loss: 0.0828
Epoch 55/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1580 - val_loss: 0.0803
Epoch 56/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1764 - val_loss: 0.0805
Epoch 57/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1614 - val_loss: 0.0792
Epoch 58/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1446 - val_loss: 0.0774
Epoch 59/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1639 - val_loss: 0.0774
Epoch 60/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1477 - val_loss: 0.0777
Epoch 61/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1810 - val_loss: 0.0776
Epoch 62/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1456 - val_loss: 0.0743
Epoch 63/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1418 - val_loss: 0.0731
Epoch 64/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1553 - val_loss: 0.0716
Epoch 65/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1360 - val_loss: 0.0815
Epoch 66/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1666 - val_loss: 0.0733
Epoch 67/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1412 - val_loss: 0.0706
Epoch 68/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1346 - val_loss: 0.0698
Epoch 69/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1601 - val_loss: 0.0703
Epoch 70/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1409 - val_loss: 0.0694
Epoch 71/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1433 - val_loss: 0.0685
Epoch 72/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1303 - val_loss: 0.0682
Epoch 73/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1276 - val_loss: 0.0681
Epoch 74/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1240 - val_loss: 0.0705
Epoch 75/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1160 - val_loss: 0.0664
Epoch 76/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1220 - val_loss: 0.0655
Epoch 77/600
15/15 [==============================] - 0s 8ms/step - loss: 0.1223 - val_loss: 0.0648
Epoch 78/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1191 - val_loss: 0.0633
Epoch 79/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1443 - val_loss: 0.0641
Epoch 80/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1383 - val_loss: 0.0653
Epoch 81/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1203 - val_loss: 0.0664
Epoch 82/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1260 - val_loss: 0.0664
Epoch 83/600
15/15 [==============================] - 0s 10ms/step - loss: 0.1182 - val_loss: 0.0660
Epoch 84/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1348 - val_loss: 0.0713
Epoch 85/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1176 - val_loss: 0.0657
Epoch 86/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1087 - val_loss: 0.0626
Epoch 87/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1277 - val_loss: 0.0630
Epoch 88/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1319 - val_loss: 0.0633
Epoch 89/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1057 - val_loss: 0.0646
Epoch 90/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1028 - val_loss: 0.0627
Epoch 91/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1076 - val_loss: 0.0631
Epoch 92/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1374 - val_loss: 0.0636
Epoch 93/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0936 - val_loss: 0.0648
Epoch 94/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1355 - val_loss: 0.0644
Epoch 95/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1179 - val_loss: 0.0631
Epoch 96/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1194 - val_loss: 0.0634
Epoch 97/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1114 - val_loss: 0.0635
Epoch 98/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0931 - val_loss: 0.0605
Epoch 99/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1103 - val_loss: 0.0587
Epoch 100/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0866 - val_loss: 0.0569
Epoch 101/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0905 - val_loss: 0.0592
Epoch 102/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1171 - val_loss: 0.0590
Epoch 103/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1004 - val_loss: 0.0579
Epoch 104/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1135 - val_loss: 0.0575
Epoch 105/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1004 - val_loss: 0.0611
Epoch 106/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1032 - val_loss: 0.0579
Epoch 107/600
15/15 [==============================] - 0s 5ms/step - loss: 0.1068 - val_loss: 0.0580
Epoch 108/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1104 - val_loss: 0.0591
Epoch 109/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1064 - val_loss: 0.0642
Epoch 110/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1174 - val_loss: 0.0585
Epoch 111/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0872 - val_loss: 0.0585
Epoch 112/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0984 - val_loss: 0.0574
Epoch 113/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0990 - val_loss: 0.0567
Epoch 114/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0932 - val_loss: 0.0574
Epoch 115/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0916 - val_loss: 0.0611
Epoch 116/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1223 - val_loss: 0.0626
Epoch 117/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0763 - val_loss: 0.0580
Epoch 118/600
15/15 [==============================] - 0s 9ms/step - loss: 0.0950 - val_loss: 0.0590
Epoch 119/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1011 - val_loss: 0.0584
Epoch 120/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0825 - val_loss: 0.0574
Epoch 121/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1054 - val_loss: 0.0569
Epoch 122/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0946 - val_loss: 0.0647
Epoch 123/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1097 - val_loss: 0.0591
Epoch 124/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0815 - val_loss: 0.0585
Epoch 125/600
15/15 [==============================] - 0s 7ms/step - loss: 0.1078 - val_loss: 0.0555
Epoch 126/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0787 - val_loss: 0.0525
Epoch 127/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0972 - val_loss: 0.0573
Epoch 128/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0954 - val_loss: 0.0526
Epoch 129/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0855 - val_loss: 0.0556
Epoch 130/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0934 - val_loss: 0.0561
Epoch 131/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0919 - val_loss: 0.0555
Epoch 132/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0912 - val_loss: 0.0560
Epoch 133/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0969 - val_loss: 0.0558
Epoch 134/600
15/15 [==============================] - 0s 6ms/step - loss: 0.1081 - val_loss: 0.0547
Epoch 135/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0838 - val_loss: 0.0582
Epoch 136/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0960 - val_loss: 0.0589
Epoch 137/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0873 - val_loss: 0.0554
Epoch 138/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0683 - val_loss: 0.0551
Epoch 139/600
15/15 [==============================] - 0s 5ms/step - loss: 0.0814 - val_loss: 0.0548
Epoch 140/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0794 - val_loss: 0.0553
Epoch 141/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0882 - val_loss: 0.0570
Epoch 142/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0893 - val_loss: 0.0558
Epoch 143/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0835 - val_loss: 0.0573
Epoch 144/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0774 - val_loss: 0.0634
Epoch 145/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0745 - val_loss: 0.0585
Epoch 146/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0745 - val_loss: 0.0586
Epoch 147/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0729 - val_loss: 0.0617
Epoch 148/600
15/15 [==============================] - 0s 7ms/step - loss: 0.0853 - val_loss: 0.0551
Epoch 149/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0900 - val_loss: 0.0576
Epoch 150/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0831 - val_loss: 0.0615
Epoch 151/600
15/15 [==============================] - 0s 6ms/step - loss: 0.0883 - val_loss: 0.0608
Epoch 151: early stopping
Out[30]:
<keras.callbacks.History at 0x190246acdd0>
In [31]:
loss = pd.DataFrame(model.history.history)
loss.plot()
Out[31]:
<Axes: >
In [32]:
prediction = (model.predict(x_test) > 0.5).astype('int32')
4/4 [==============================] - 0s 3ms/step
In [33]:
from sklearn.metrics import classification_report, ConfusionMatrixDisplay
In [34]:
print(classification_report(y_true=y_test, y_pred=prediction))
              precision    recall  f1-score   support

           0       0.98      0.95      0.96        43
           1       0.97      0.99      0.98        71

    accuracy                           0.97       114
   macro avg       0.97      0.97      0.97       114
weighted avg       0.97      0.97      0.97       114

In [35]:
ConfusionMatrixDisplay.from_predictions(y_true=y_test, y_pred=prediction)
Out[35]:
<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x190248bf710>
In [ ]: